Tratamiento de la neumonía asociada a la ventilación mecánica: cómo aplicar las nuevas guías

Jordi Carratalà

Department of Infectious Diseases

Hospital Universitari de Bellvitge

Disclosures

Speaker, Scientific advisory:

Astellas, MSD, Angellini, Pfizer

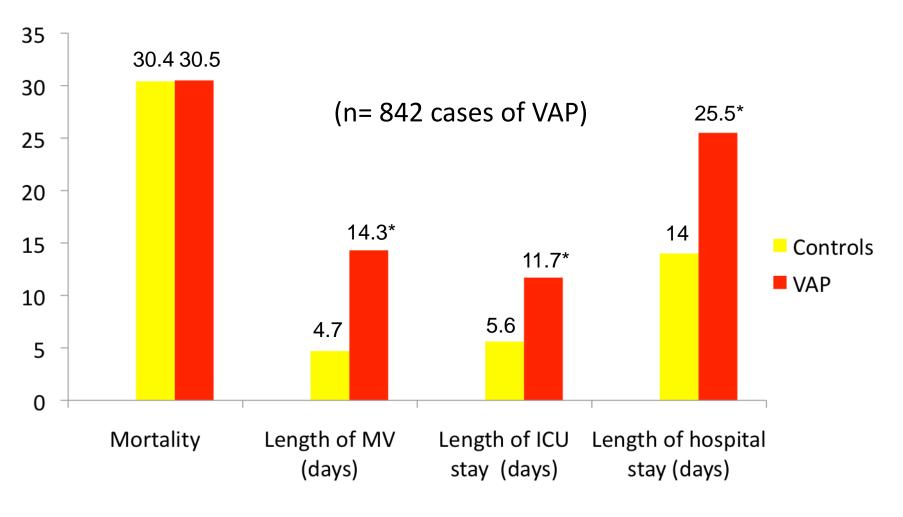
Research grants:

Instituto de Salud Carlos III, Ministry of Economy, Spain

COMBACTE-MAGNET, Innovative Medicines Initiative, EU

Magnitude of the problem (I)

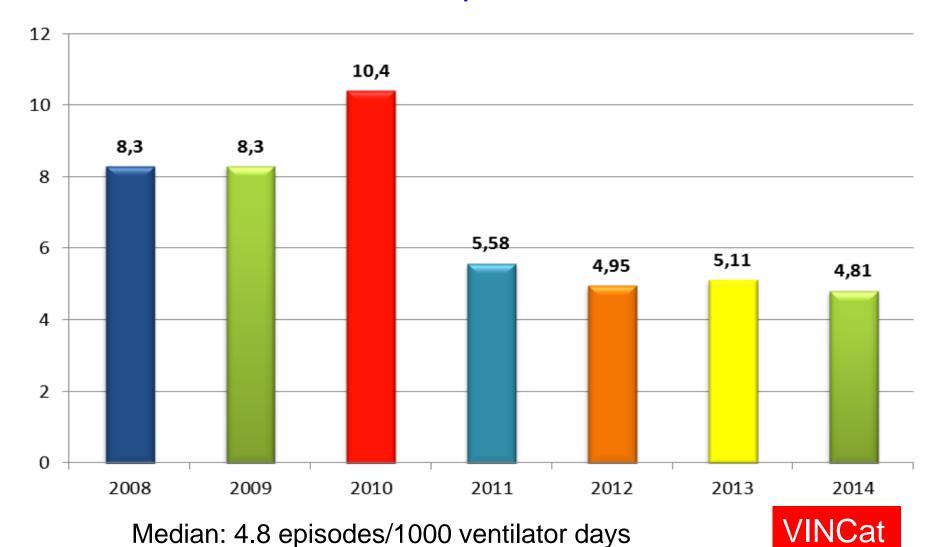
 VAP and HAP continue to be frequent complications of hospital care.

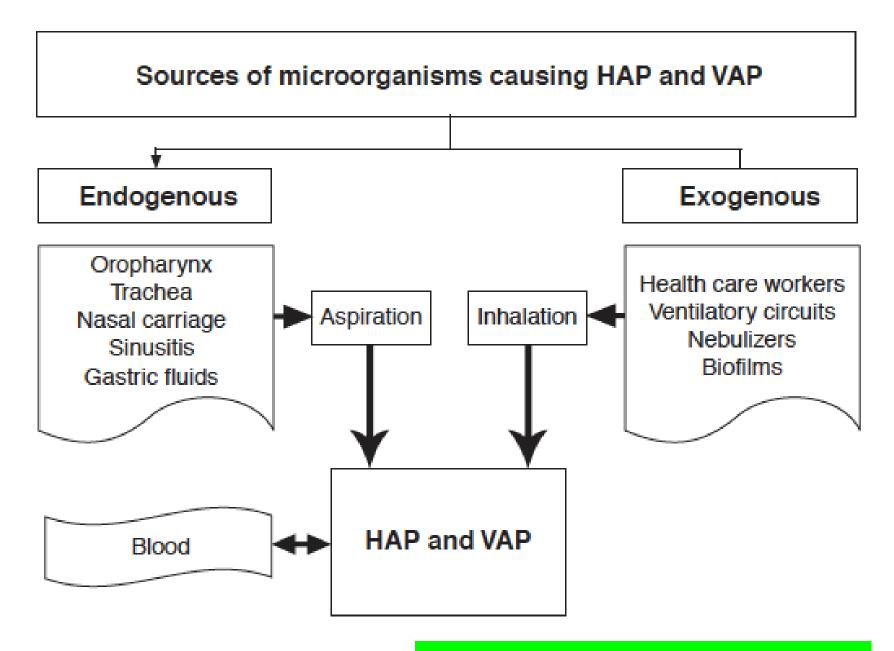

- Together, they account for 22% of all HAIs.
- About 10% of patients requiring MV develop VAP.
- VAP is responsible for half of ICU antibiotic prescriptions.

Magnitude of the problem (II)

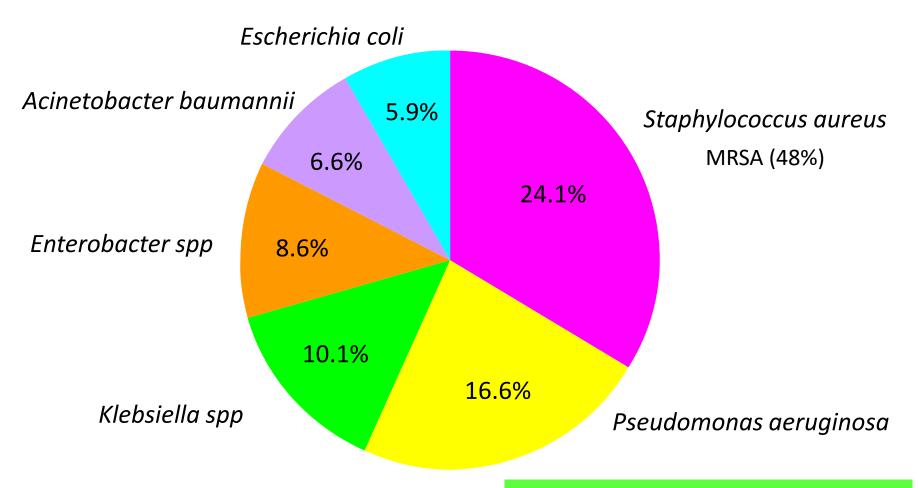
VAP

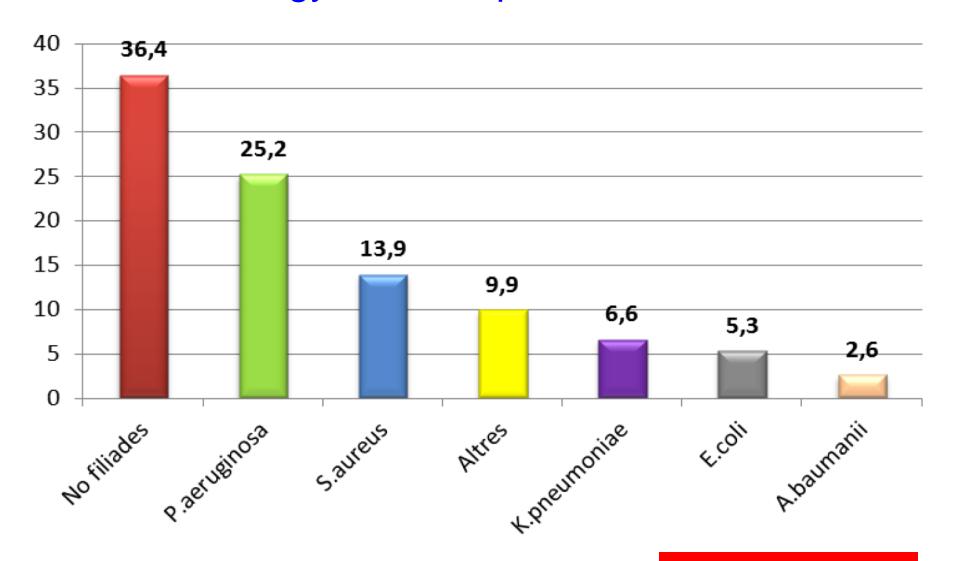
- all cause-mortality: 20 50%
- attributable mortality: 13%
- Prolonged length of MV: 7.4 11.5 days.
- Prolonged LOS: 8.7 13.1 days.
- The excess cost associated with VAP: \$40,000 per patient.


Impact of VAP on outcomes in a large US database


^{*} p < 0.0001

Incidence density of VAP

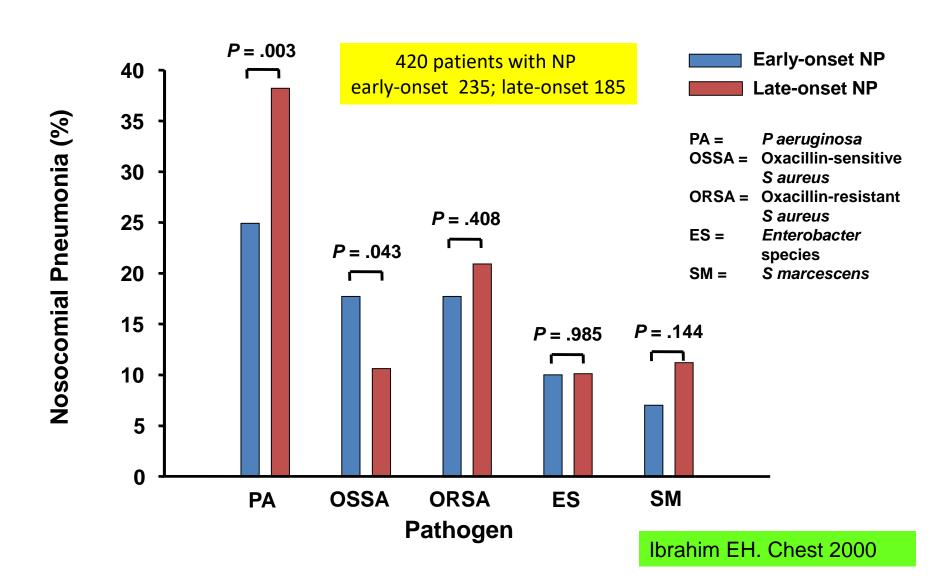

ICU: 34 Episodes: 157



Distribution of pathogens associated with 8.474 cases of VAP reported to the CDC (2009-2010)

Sievert DM. Infect Control Hosp Epidemiol 2013

Etiology of 157 episodes of VAP



Etiology of VAP according to the duration of intubation

Early-onset VAP (≤4 days)	Late-onset VAP (>4 days)
Community-acquired	Hospital-acquired
Streptococcus pneumoniae	Pseudomonas aeruginosa
Haemophilus influenzae	MRSA
Staphylococcus aureus	Acinetobacter
	Enterobacter
Antibiotic-sensitive	Antibiotic-resistant

Kollef M. Chest 2005

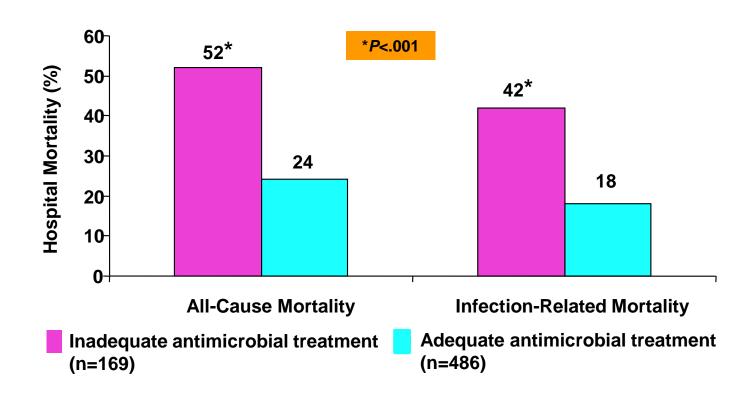
Pathogens associated with NP in the ICU

Factors associated with the development of VAP caused by MDR pathogens

Factors	Quality of evidence
 Use of antibiotics within 90 days prior to the 	Moderate quality
occurrence of VAP	
Severe sepsis on admission	
 Recent use of corticosteroids (≥14 days in the 	
last 3 months)	
ARDS preceding VAP	Low quality
 Receipt of renal replacement therapy prior to 	
VAP onset	
 Greater than 5 days of hospitalization prior to 	
the occurrence of VAP	

IDSA GUIDELINE

Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society


Andre C. Kalil, 1,4 Mark L. Metersky, 2,4 Michael Klompas, 3,4 John Muscedere, 5 Daniel A. Sweeney, 6 Lucy B. Palmer, 7 Lena M. Napolitano, 8 Naomi P. O'Grady, 9 John G. Bartlett, 10 Jordi Carratalà, 11 Ali A. El Solh, 12 Santiago Ewig, 13 Paul D. Fey, 14 Thomas M. File Jr, 15 Marcos I. Restrepo, 16 Jason A. Roberts, 17,18 Grant W. Waterer, 19 Peggy Cruse, 20 Shandra L. Knight, 20 and Jan L. Brozek 21

Clin Infect Dis 2016; 63: e61-111

- Empiric antibiotic treatment
- MRSA
- Pseudomonas aeruginosa
- Carbapenem-resistant pathogens
- Duration of antibiotics

- Empiric antibiotic treatment
- MRSA
- Pseudomonas aeruginosa
- Carbapenem-resistant pathogens
- Duration of antibiotics

Importance of initial, appropriate antibiotic therapy

Should selection of an empiric antibiotic regimen for VAP be guided by local antibiotic therapy?

- We recommend that all hospitals regularly generate and disseminate a local antibiogram, ideally one that is specific to their ICU population.
- We recommend that empiric treatment regimens be informed by the local distribution of pathogens associated with VAP and their antimicrobial susceptibilities.

What antibiotics are recommended for empiric treatment of clinically suspected VAP?

- Coverage for S. aureus, P. aeruginosa and other GNB.
- Vancomycin or linezolid for pts with risk factors for resistance, pts being treated in units where >10-20% of *S. aureus* isolates are MRSA or when its prevalence is not known.
- Two antipseudomonal antibiotics from different classes for pts with risk factors for resistance (prior ATB use, 90 d), pts in units where >10% of isolates are resistant or when its prevalence is not know.
- Avoid: aminoglycosides and colistin if alternative agents with adequate activity against GNB are available.

A. Gram positive ATBs with MRSA activity	B. Beta-lactam based agents (anti-Pseudomonal activity)	C. Non beta-lactam based agents (anti-Pseudomonal activity)
Glycopeptides Vancomycin 15 mg/kg iv q 12h (consider a loading dose of 25- 30 mg/kgx 1 for severe illness) OR	Cephalosporins Cefepime 2 g iv q 8-12 h Ceftazidime 2 g iv q 8 h OR	Fluoroquinolones Ciprofloxacin 400 mg iv q 8 h Levofloxacin 750 mg iv q 24 h OR
Oxazolidinones Linezolid 600 mg/ iv q 12h	Carbapenems Imipenem 500 mg iv q 6 h Meropenem 1-2 g iv q 8h OR Anti-Pseudomonal Penicllins Piperacillin-tazobactam 4.5 g iv q 6h OR Monobactams Aztreonam 2 g iv q 8 h	Aminoglycosides Amikacin 15-20 mg/kg iv q24h Gentamicin 5-7 mg/kg iv q24h Tobramycin 5-7 mg/kg iv q24h OR Polymixins Colistin 5 mg/kg iv x 1 (loading dose) followed by 2.5 mg x (1.5 x Cr Cl + 30) iv q12h (mainenance dose)

- Empiric antibiotic treatment
- MRSA
- Pseudomonas aeruginosa
- Carbapenem-resistant pathogens
- Duration of antibiotics

What antibiotics should be used for the treatment for MRSA VAP/HAP?

 MRSA VAP/HAP must be treated with either vancomycin or linezolid rather than other antibiotics or antibiotic combinations

Remarks: The choice between linezolid and vancomycin should be governed by patient-specific risk factors such as blood cell counts, concurrent prescriptions for serotonin reuptake inhibitors, renal function, and cost.

Treatment of HAP with linezolid vs vancomycin: A systematic review and meta-analysis

9 randomized trials with a total of 4026 patients

RD

Mortality: 0.01% (CI 95% -2.1% to 2.1%; P= 0.992)

Clinical response: 0.9% (CI 95% -1.2% to 3.1%; P= 0.409)

MRSA eradication: 6.4% (CI 95% -4.1% to 16.9%; P= 0.230)

GI effects were more frequent with linezolid, but no differences were found with renal failure, thrombocytopenia and drug discontinuation due to adverse events

- Empiric antibiotic treatment
- MRSA
- Pseudomonas aeruginosa
- Carbapenem-resistant pathogens
- Duration of antibiotics

Which antibiotic should be used to treat patients with VAP/HAP due to *Pseudomonas aeruginosa*?

- Choice of ATB must be based upon the results of antimicrobial susceptibility testing.
- Aminoglycoside monotherapy should be avoided.

Should monotherapy or combination therapy be used to treat patients with VAP/HAP due to *Pseudomonas aeruginosa*?

- For pts who are not in septic shock or at high risk for death, monotherapy rather combination therapy must be used.
- For pts with septic shock or at high risk of death, combination therapy rather than monotherapy must be used.

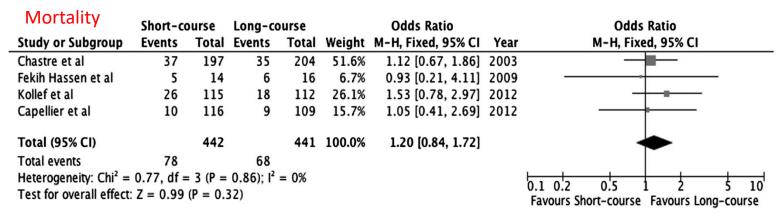
- Empiric antibiotic treatment
- MRSA
- Pseudomonas aeruginosa
- Carbapenem-resistant pathogens
- Duration of antibiotics

Which antibiotic should be used to treat patients with VAP/HAP due to carbapenem-resistant pathogens?

 In patients with VAP/HAP caused by a carbapenemresistant pathogen that is sensitive only to polymyxins, intravenous polymyxins with adjunctive inhaled colistin must be used.

Remarks: Colistin for inhalation should be administered promptly after being mixed with sterile water. This recommendation was made by the FDA after a report that a cystic fibrosis patient died after being treated with a premixed colistin formulation.

- Empiric antibiotic treatment
- MRSA
- Pseudomonas aeruginosa
- Carbapenem-resistant pathogens
- Duration of antibiotics


Should patients with VAP receive 7 days or 8-15 days of antibiotic therapy?

 For patients with VAP, a 7-day course of antimicrobial therapy rather than a longer duration should be used.

Remarks: There exist clinical situations in which a longer duration of antibiotics may be indicated, for example in patients with the delayed clinical improvement.

Short- vs long-duration antibiotic regimens for VAP: A systematic review and mata-analysis

4 RCTs comparing short (7-8 days) with long (10-15 days) regimens

Mortality in pts with non-fermentative-GN bacteria

	Short-co	ourse	Long-co	ourse		Odds Ratio		Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI		
Chastre et al	15	64	19	63	55.7%	0.71 [0.32, 1.56]	2003			
Kollef et al	12	47	4	38	44.3%	2.91 [0.86, 9.93]	2012	+		
Total (95% CI)		111		101	100.0%	1.33 [0.33, 5.26]				
Total events	27		23							
Heterogeneity: Tau ² =				(P = 0.0)	$(16); I^2 = 7$	'2%		0.1 0.2 0.5 1 2 5 10		
Test for overall effect:	Z = 0.40	(P = 0.0)	59)					Favours short-course Favours long-course		

Dimopoulos G. Chest 2013

Antibiotic-free days

	Short-course Long-course				rse		Mean Difference	Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Chastre et al	13.1	7.4	197	8.7	5.2	204	50.1%	4.40 [3.14, 5.66]		
Fekih Hassen et al	4.14	1.9	14	1.75	1.6	16	49.9%	2.39 [1.12, 3.66]	-	
Total (95% CI)			211			220	100.0%	3.40 [1.43, 5.37]		
Heterogeneity: Tau ² = Test for overall effect:						-10 -5 0 5 10 Favours long-course Favours short-course				

Relapses

	Short-co	ourse	Long-co	ourse		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year	M-H, Fixed, 95% CI
Chastre et al	33	197	23	204	86.4%	1.58 [0.89, 2.81]	2003	+
Fekih Hassen et al	1	16	1	14	4.6%	0.87 [0.05, 15.28]	2009	
Capellier et al	6	116	2	109	9.0%	2.92 [0.58, 14.78]	2012	-
Total (95% CI)		329		327	100.0%	1.67 [0.99, 2.83]		•
Total events	40		26					
Heterogeneity: Chi ² =	0.69, df =	= 2 (P =	0.71); I ²	= 0%				0.05 0.2 1 5 20
Test for overall effect:	Z = 1.91	(P = 0.0)	06)					Favours short-course Favours long-course

Dimopoulos G. Chest 2013

